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Abstract  

Protein crystal growth often depends on the combi- 
nation of many different factors. Some affect protein 
solubility directly; others may act indirectly by causing 
conformational changes. Systematic characterization of 
these factors can be important for generating good 
crystals. It can also provide useful insight into the 
biochemical behavior of the protein being crystallized. 
Here we focus on statistical methods to achieve these 
two objectives. (1) Characterization of a protein system 
by analyzing patterns of crystal polymorphism under 
different levels of biochemical parameters, such as lig- 
ands and pH. Tests of the reproducibility of crystal 
growth experiments indicate that quantitative scales of 
crystal quality can be statistically significant. Analysis 
of variance for a replicated, full-factorial design in 
which four factors were tested at two levels has been 
used to demonstrate highly significant, biochemically 
relevant, two-factor interactions strongly implicating pH 
and ligand-dependent conformational changes. (2) Opti- 
mization of crystal growth via response-surface methods. 
'Minimum predicted variance' designs provide for effi- 
cient response-surface experiments aimed at constructing 
quadratic models in several dimensions. We have used 
such models to improve crystal size and quality signif- 
icantly for three forms of Bacillus stearothermophilus 
tryptophanyl-tRNA synthetase. In one case we can now 
avoid having to increase the size by repeated seeding, a 
difficult procedure that also produces unwanted growth 
of satellite crystals. Graphs of two-dimensional level 
surfaces reveal a number of ridges, where the same result 
is obtained for many combinations of the factors usually 
varied when trying to improve crystals. An important in- 
ference is that it may be better to sample simultaneously 
for the effects of protein concentration and supersatura- 
tion. For a system involving only one crystallizing agent, 
supersaturation can be approximated as the product 
of protein and precipitant concentrations. Use of this 
search direction significantly improves the performance 
of response-surface experiments. Advantages of growing 
crystals at stationary points of their response surfaces 
include better crystals and higher reproducibility, since 
crystal growth at stationary points is insulated from 
the deleterious effects of experimental fluctuations. This 
arises because the derivatives of the response are by 
definition zero with respect to the experimental variables. 
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Quantitative analysis of appropriately designed crystal 
growth experiments can thus be a powerful way to 
characterize complex and interacting biochemical de- 
pendencies in macromolecular systems and optimize 
parameters important to the crystallography. 

1. Introduct ion 

Crystallization of a macromolecule is a complex, multi- 
equilibrium process that depends on an active interplay 
between intermolecular forces in solution and the surface 
properties and conformation of the macromolecule (We- 
ber, 1991). The best value for an experimental variable 
affecting these equilibria nearly always depends on the 
settings of other variables. Understanding the joint func- 
tional dependence of crystal growth on different factors 
is, therefore, an invaluable tool for making the best 
crystals. Designed factorial experiments and quantitative 
analysis of variations in crystal growth behavior provide 
a natural way to deal with this multidimensionality. The 
elements of experimental design and analysis described 
here are summarized in Table 1. 

Any multidimensional experimental problem entails a 
factorial design, in which N different 'factors' are varied 
simultaneously in a series of M > N experiments, in order 
to determine how they affect the result. By quantitative 
analysis, we mean estimating and interpreting param- 
eters that minimize the sum of the squares of differences 
between observed results, referred to here as Qob~, and 
predictions, Qcalc, based on an appropriate mathematical 
model for crystal growth. Mathematical models can be 
useful in three distinct phases of a crystal growth project: 
screening, characterization and optimization. Using such 
models entails an experimental design, and a quantitative 
score, Qob~, attached to each experiment, as well as the 
model itself. 

1.1. Experimental design 
Different experimental designs, and different models 

are appropriate, depending on which objective is to be 
met (Table 1). Most straightforward is the full-factorial 
design. All possible combinations of the different fac- 
tor levels are tested in a full-factorial experiment, so 
they are usually limited to a small number of factors 
that are often tested at only two different 'levels'. A 
full-factorial design is both necessary and sufficient to 
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Table 1. Designed experiments.for different contexts 

Definitions for terms used in the text, together with the three different contexts in which quantitative analysis has proven 
useful to us. The type of design matrix and mathematical model used for fitting the observed data are associated with 
specific objectives typically encountered in a crystal growth or other experimental project requiring identification of 
suitable conditions, characterization of the effects and optimization. 

Factorial design: M experiments with simultaneous variation of N < M factors 

Quantitative analysis: Minimizing 2 IQ{,t,.~- Q~.,~ 
j =  I 

Objective 
Detection of important main effects and 
interactions 

Verification of these inferences 

Optimization of crystal growth conditions 

Design/model 
Incomplete factorial 

N(factors) 
Q~.,c =/3o + Z /3,F, + e (I) 

Replicated. full factorial 
N(factors) N -  I N 

Qc,tc =/30 + ~'. ~3iF, + ~. ~" /3vFiFj  + ... higher terms + e (II) 
i i =  I j > i  

Response surface 
N(|'a ) . . . . .  N - I  ~.. ~. 

Qc,,~ =/30 + 2 /3,F, + 2 /3,,F, Fj + /3 ,r  2, + e (III) 
i t =  I i > i  i =  I 

estimate jointly and unambiguously the importance of 
synergistic effects between all possible combinations of 
factors. Full-factorial experiments (Carter, Doubli6 & 
Coleman, 1994) are among the most powerful ways to 
verify and characterize quantitatively synergistic effects 
between more than one factor. 

Neither screening nor optimization are typically done 
with full-factorial designs. Rather, they involve differ- 

0 

(a) 

(b) 
Fig. 1. A comparison between the experimental designs appropriate to 

(a) sampling an unknown experimental space (screening) and (b) 
modeling the response surface of an already partially characterized 
process (optimization). 

ent strategies for sampling the space covered by the 
full-factorial design. A full-factorial screening design 
typically would involve many more experiments than 
are practical, and some subset must be chosen to sample 
it. Optimization, on the other hand, requires a different 
sampling strategy, whose objective is to construct an 
accurate functional model or 'response surface', for the 
behavior of the system. Because they require efficient 
sampling, screening and response-surface designs are 
often selected from a large number of potential designs 
generated by a computer program according to specific 
criteria, illustrated schematically in Fig. 1. 

Efficient covering of the entire experimental space is 
a key requirement for screening. Incomplete factorial 
designs, also called 'sequence-levelled experimental de- 
signs' (SLED's, Carter, C. W., personal communication) 
were introduced to detect the most important factors 
and their interactions from screening experiments. Their 
use has been described previously (Carter & Carter, 
1979; Carter, Baldwin & Frick, 1988; Carter, 1990, 
1992). Factor levels are chosen randomly and then 
balanced to achieve ne~ly uniform sampling (Fig. la) 
and preserve the ability to detect large main effects 
and two-factor interactions with minimal confounding 
(Carter, 1992). We recently illustrated the power of 
these designs quantitatively by using them for phase 
permutation experiments in which the sampling fraction 
was roughly 1/(N 1/2) (Doublie, Xiang, Bricogne, Gilmore 
& Carter, 1994) 

A response surface is an analytical approximation to 
how the system actually responds to the input variables. 
It can be used to locate stationary points that may be 
optima, and hence to find the best conditions for a de- 
sired result. Response-surface experiments are sampled 
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by different criteria from those used in screening (Fig. 
l b). If one already knows something about where the 
best result might be obtained, it is no longer sensible to 
scatter the experimental test points uniformly throughout 
the space. Therefore, points are selected that will have 
maximal impact on the accuracy of the parameters of the 
response-surface function and hence on the coordinates 
of stationary points. 

The problem of how to choose the best points for the 
individual tests has received considerable attention re- 
cently in the mathematical literature (Conway & Sloane, 
1987). One way to define 'maximal impact' is to require 
that the experimental points produce a model with a min- 
imum integrated prediction variance (Hardin & Sloane, 
1993), or a minimum scatter between the observed and 
calculated values of the dependent variable. It can be 
shown for a quadratic model that these consist of some 
number (one or more, depending on the total number 
of experiments) near the suspected optimum, together 
with others spread around close to the boundary of 
the experimental volume. Often the individual tests are 
placed in a hypercube (Fig. 1 b), as was the case for our 
design (Table 3), which was prepared for us by Neil 
Sloane, using his program GOSSET (Hardin & Sloane, 
1993). A simple analogy is that of fitting the slope and 
intercept of a straight line through a set of sample points, 
which works best if a majority of the sampling points lie 
close to the low and high ends of the interesting range 
of the independent variable, xi. Since Hardin-Sloane 
designs minimize the integrated prediction variance, they 
also reduce the number of experiments necessary to fit 
the surfaces with a desired precision. Therefore, they 
maximize the efficiency of an optimization search much 
as incomplete factorial experiments do for screening 
experiments (Carter, Baldwin & Frick, 1988; Carter, 
1990, 1992). 

1.2. Scoring crystal growth: converting impressions 
into quantitative measures 

To be quantitatively useful a score must faithfully 
reflect what we are looking for. Crystal growth ex- 
periments have a predictable variability. One quickly 
develops an intuitive feeling from the appearance of 
a precipitate that some conditions are 'close' to pro- 
ducing crystals, while others seem straight away to be 
disastrous. We have found that crystal growth exper- 
iments are quite reproducible, and that this intuition, 
although crude, can be surprisingly accurate. A simple 
approach to scoring is to quantitate this intuition. It 
is surprisingly robust. The most dangerous mistakes - 
underrating a microcrystalline precipitate and overrating 
a crystal with nice morphology but poor diffraction 
characteristics - can be avoided. All precipitates can 
be assayed by streak seeding (Stura & Wilson, 1990), 
and diffraction diagrams for all crystals will normally 
be characterized. Thus, consistent and accurate scoring 

systems can be based initially on microscopic analysis 
and supplemented by further tests. More sophisticated 
assays for 'crystallizability', based on hydrodynamic 
measurements of the thermodynamics of aggregation 
behavior, have considerable potential utility (Kam, Shore 
& Feher, 1978; Baldwin, Crumley & Carter, 1986; 
Kadima, McPherson, Dunn & Jurnak, 1990; Mikol, 
Hirsch & Gieg6, 1989, 1990; Feher & Kam, 1985; 
Wilson, 1990; George & Wilson, 1994). 

Most experiments described here were evaluated 
using our earlier semi-quantitative system that dis- 
tinguished three different categories of precipitates 
(flocculent, granular and spherulites); three different 
categories of crystals, corresponding to dominant growth 
in one, two, or three dimensions; and three different 
levels of diffraction quality (Carter & Carter, 1979). We 
were able to utilize the full scale in most cases because 
most of the crystal forms have now been characterized 
rather thoroughly by X-ray diffraction. 

Optimization experiments are far easier to score. 
Diffraction quality is highly correlated with crystal vol- 
ume, asymmetry and uniformity. We scored our most 
recent response-surface experiments for each of these: 
crystal volume was estimated from the product of the 
three principal axis lengths, and the asymmetry ra- 
tio, W/L -- width/length, was the ratio of the smallest 
dimension to the largest dimension measured with a 
microscopic reticle. Uniformity was assessed from the 
relative quality of the crystal faces and the presence or 
absence of satellite crystals. 

1.3. Mathematical models and inference; main effects, 
interactions and response surfaces 

Regression methods of statistical inference involve 
construction of a predictive model for the result, based 
on the contributions of the different factors. Model 
parameters are estimated by minimizing the sum of 
the squares of differences between Qob~ and Qcalc. We 
have used three types of models (Table 1). Models (II) 
and (III) are derived from the first by adding specific 
terms, which are indicated in bold face. The linear model 
used in our original study (Carter & Carter, 1979), 
included only main effects [Table 1, (I)]. For the full- 
factorial design in Table 2 we added all the multi-factor 
interaction terms [Table 1, (II)]. Quadratic models [Table 
1, (III)] supplement the general linear model with all 
possible squared terms, together with the two-factor 
interactions. By substituting new variable names for 
the squared and interaction terms, these models become 
special cases of the linear model (I). 

In all three models, e is the residual error to be 
minimized, and the constant value,/30, is the mean value 
of all experiments in the design. Each/3i coefficient in 
the linear model (I) is the average amount by which the 
presence of factor, Fi, raises or lowers the score from 
the overall average. Higher-order /3i coefficients have 
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similar significance for models (II) and (III). Since many 
important parameters have non-linear effects it is not 
surprising that crystal growth behavior can be modeled 
more effectively by multivariate quadratic functions. 
These are the simplest functions that assume stationary 
points, which can be either maxima, minima, or saddle 
points, on interior points of the range of independent 
variables. Stationary points can be determined analyti- 
cally by partial differentiation and equating the gradient 
to zero. Coordinates of stationary points that are optima 
provide estimates for the factor levels giving the best 
result. This is the basis of the response-surface method 
(Box, Hunter & Hunter, 1978). 

1.3.1. Replication and the analysis of variance. Key 
to the exploitation of full-factorial and response-surface 
methods is the quantitative analysis of the different be- 
haviors observed as experimental conditions are varied. 
In order to assess the significance of effects detected 
from the variation in a factorial experiment they must be 
compared with the variance of the experimental obser- 
vations. These estimates are necessary for the analysis 
of variance (ANOVA; Box, Hunter & Hunter, 1978), 
which in turn provides an indication of which effects are 
statistically significant. In short, one wants to know the 
signal-to-noise ratio. An essential requirement for using 
ANOVA is a reasonable estimate for the experimental 
error, including the reproducibility of the scoring system. 
Replication, or carrying out each experiment two or 
more times, provides a direct estimate for the variances 
of individual tests. The quest for significance has led 
us increasingly to use carefully replicated experiments, 
in which each point is sampled with at least duplicate 
experiments. 

1.4. Summary of results 
Our purpose here is first to review work to be de- 

scribed elsewhere (Carter, Doubli6, & Coleman, 1994) 
demonstrating the possibility of scoring crystal growth 
experiments quantitatively, and then to describe the use 
of Harden-Sloane response-surface designs to improve 
several inferior crystal forms. The examples are from the 
study of Bacillus stearothermophilus tryptophanyl-tRNA 
synthetase (TrpRS), a dimeric enzyme with identical 
subunits, Mr = 37 000 Da (Barstow, Sharman, Atkinson 
& Minton, 1984). 

A full-factorial experiment described previously (Ta- 
ble IV in Carter & Carter, 1979) showed that pH changes 
and the presence of different ligands led to extensive 
crystal polymorphism. Quantitative analysis of a twofold 
replication of that design showed that the quality of 
the crystals associated with this polymorphism was due 
primarily to the pH and to the synergistic effects of 
pH plus tryptophan and ATP plus tryptophan. Thus, 
ligand-dependent conformational changes are likely to 
be an underlying cause of the polymorphism. Molecular 
flexibility probably plays a key role in catalysis and/or 

recognition for this enzyme family (Carter, 1993), so the 
analysis also helped to establish connections between 
crystal growth conditions and function. 

Two different crystal forms of TrpRS have given 
us trouble with reproducibility, inadequate volume 
and/or unsuitable morphology. Using response-surface 
experiments we have shown that these difficulties 
arose because we were not growing them under 
optimal conditions. We have used a 20-experiment 
Hardin-Sloane response-surface design for four vari- 
ables to improve significantly our conditions for growing 
both difficult crystal forms and to characterize a third 
form, which had always given good crystals. 

In the course of learning to use response-surface 
methods, we also realized that two aspects of what we 
were doing were likely to be generally useful. First, 
it turns out to be very useful to vary simultaneously 
the protein concentration and the product of the protein 
and precipitant concentrations as two of the four 'fac- 
tors'. When there is only a single crystallizing agent, 
these represent the size of the initial 'reservoir' of 
soluble protein and the initial supersaturation. Using the 
Harden-Sloane matrix in this way significantly improved 
the performance, enabling us to detect the presence 
of an optimum condition well outside the range of 
supersaturation tested previously. Second, we realized 
that working at stationary points helps insulate crystal 
growth from deleterious and irreproducible experimental 
fluctuations. 

2. Materials and methods 

2.1. Enzyme sources and crystallization conditions 
Enzyme used in the factorial experiment was obtained 

in a crude fraction (Atkinson et al., 1979) or from a 
cloned source (Carter, 1988), purified (Carter & Green, 
1982) and crystallized from 4.2 mg ml -l protein solutions 
in 2.1 M K2HPO4 at pH = 6.2 or 7.6, with combinations 
of the ligands tryptophan and ATP as described (Carter 
& Carter, 1979). Conditions for response-surface experi- 
ments to optimize individual crystal forms are described 
in §4. 

2.2. Reproducibility of crystal growth conditions 
Crystal growth depends on a number of factors that 

are especially hard to control experimentally. The pH 
of a solution containing a high salt concentration is 
difficult to measure accurately. A number of various 
factors that affect nucleation (and growth) are themselves 
quite likely to interact strongly. One example of the latter 
problem is the fact that the solubilities of crystals and 
the crystallizing agent, potassium phosphate, are both 
temperature dependent. Thus, it is hard to characterize 
accurately the absolute effects of any of these factors 
without making a complete phase-diagram analysis. For 
these reasons, several decisions were made at the outset 
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to limit the response-surface studies to a protocol that 
was as reproducible and well characterized as possible. 
The following aspects of this protocol are notable. 

2.2.1. pH control. Individual phosphate stock solu- 
tions of the specified pH were made up at 3.0 M in 
KH2/K2H phosphate by first determining empirically a 
nomograph relating the mole fraction of each salt and 
the pH that resulted when the 3.0 M stock was diluted to 
2. l M, as measured with single point standardization, and 
without intermediate washing of the pH electrode with 
deionized water between determinations for different 
buffers. All pH values were adjusted either with 12 N 
phosphoric acid or 12 N KOH, after they had been made 
up to volume (variations from the desired pH were never 
more than 0.02 pH units, and the changes in phosphate 
concentration caused by addition of the acid or base were 
negligible). 

2.2.2. Protein concentration. All experiments were 
carded out in either 5 or 35 [al perspex dialysis cells ob- 
tained from Cambridge Repetition Engineers, Ltd (Cam- 
bridge, England). Use of dialysis, rather than vapor 
diffusion for equilibration, increased our control over 
reproducibility because both the pH and the refractive 
index could be monitored and controlled, and because 
the protein concentration remained constant. However, 
an important and irreducible source of variation in 
protein concentration was introduced by the variability 
of the indentation of the dialysis membrane into the well 
following application of the membrane and O-ring. It 
was assumed that this variation applied nearly equally 
to all concentrations in the designs. Recent work has 
shown that vapor diffusion poses no special difficulty 
(Lee Kuyper, unpublished results). 

2.2.3. Precipitant concentration. All crystallizing so- 
lutions (approximately 2.1 M in phosphate) were titrated 
with deionized water immediately before setting up the 
experiments, in order to achieve a refractive index of 
1.3735 (5) for all pH values. This meant that the molar 
concentration of salt varied smoothly with the pH, being 
somewhat higher at lower pH's and lower at higher pH's. 
For the third response-surface experiment this was not 
possible as the precipitant concentration was explicitly 
varied as a component of the composite independent 
variable, [protein] x [precipitant] (§4.2). 

2.2.4. Pre-incubation. During the work, we found that 
a pre-incubation at sub-saturating salt concentrations was 
essential for optimal crystal growth. Accordingly, all 
experiments were dialyzed for 24 h at approximately half 
strength, before adding the final equilibrating solution. 

2.2.5. Temperature. All experiments at the same tem- 
perature were carded out in the same Linbro plate and 
in environmental chambers at the stated temperature, 
except for room-temperature experiments, which were 
monitored several times daily for temperature fluctu- 
ations. These precautions could assure a temperature 
constancy of only +0.5 °C. 

2.2.6. Other. All experiments contained PMSF 
(0.1 mM), ~-mercaptoethanol (0.2% by volume) and 
toluene (0.05% by volume) as previously described. 
Some of the microphotographs were generously taken 
for us by Professor Peter Petnlsz in the UNC Depgrtment 
of Cell Biology and Anatomy. 

2.3. Statistical calculations 

Calculations were carded out using the computer pro- 
grams SYSTAT (Wilkinson, 1987) and Theorist (Bonadio, 
1990) as implemented on a Macintosh SE computer. 
Examples are summarized in Tables 2 and 5. Levels 
of the four factors of the full-factorial design in Table 
2 were coded as -1 for the lower level (low pH or 
temperature, absence for tryptophan or ATP) and 1 for 
the higher level. 

2.3.1. Contrasts. Preliminary examination of a facto- 
rial experiment involves calculating contrasts for main 
effects and interactions. A contrast is defined as the 
average difference between those experiments treated 
at the two levels.* For two-factor interaction effects 
(columns E-J) the contrast is the difference between the 
average effects of one factor at the two different levels 
of the other factor (Box, Hunter & Hunter, 1978; Carter, 
1990). A large two-factor interaction contrast indicates 
likely non-additive or synergistic effects between the 
two factors. Higher-order interaction contrasts (columns 
K-P) are also pairwise comparisons between multi-factor 
products having the same parity, since the signs in 
columns E-P are the products of the appropriate signs 
in columns A-D. 

2.3.2. Statistical significance. Although easy to cal- 
culate, the statistical significance of the contrast sums 
themselves cannot be determined directly from their 
magnitudes; it must be evaluated by comparing their 
magnitudes with the experimental error. This can be 
done conveniently by examining the corresponding anal- 
ysis of variance (ANOVA) tables. ANOVA has a simple 
geometrical representation if we consider the ensemble 
of the M experimental results as a vector in M di- 
mensions, whose elements are the experimental results, 
{Qot~,j}. The corresponding vector of calculated values, 
I Q~lc, j), is decomposed into an average vector, I Qave, j }, 
and a treatment vector, I Qr, j}, whose components are 
the contributions calculated from the model. The F-ratio 
test compares the lengths of I Qr, j} and the residual 
vector, I QR, ~ } = I Qo~, i - Q~ic, j }, given by the corre- 
sponding treatment and error 'sums of squares' corrected 
for the number of degrees of freedom (Box, Hunter 
& Hunter, 1978). The P value is the probability of 

* An equivalent definition of the contrast, and the one used in SYSTAT, 
is the average difference between experiments treated at the high level 
and the overall average for all experiments. The contrasts in Table 2 were 
obtained by multiplying the average score in column S for each treatment 
by the sign in the appropriate column (A-P), summing and dividing by 
8, which is the number of treatments at each of the two levels. 
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Table 2. 2 4 Factorial experiment for tryptophanyl-tRNA synthetase ligand complex crystals 

The design is keyed to the results in Fig. 2 via the letters in parentheses after the experiment number. Experimental scores for two 
independent replicates from different dates are given in columns Q and R, the mean and variance in columns S and T, and contrasts for 
all effects and interactions with their F ratios and probabilities under the null hypothesis in the bottom three rows. 

E x p t  

A B C 

p H  T e m p  T r p  

(w) 

1 ( a )  - - - 

2 (b) - .4- 

3 (;) - - 

4 ~  - + - 

5 (e) - ÷ 

6 ( / )  - + + 

7 (m) - + 

8 (n) + + 

9 ( c )  + - - 

10 (d) + + - 

11 k )  + - - 

12 (/) + 4- - 

13 (g) + + 

14 ( h )  + + + 

15 ( o )  ~- - + 

16 (p) + 4 + 

C o n t r a s t  3.13 - 0 . 1 3  0 A 3  

A N O V A  

F r a t i o  8 3 . 3  0 . 1 3  0 . 1 3  

P r o b a b i l i t y  9 . 6  0 . 7 2 0  0 . 7 2 0  

x l O  s 

D E F G H I J K L M N P Q R S T 

A T P  p H x  p H x  p H ×  T e m p  T e m p  W x  p H  × p H x  p H x  T e m p  p H x  Q *  Q f  ( Q )  V a r : ~  

T e m p  W A T P  x W x A T P  T e m p  T e m p  W x  x W x  T e m p  2 / 7 8  1 / 9 1  

A T P  x 14" x A T P  A T P  × W 

A T P  × 

A T P  

- + + + + + + . . . .  + 5 5 5.0 0.0 

- - + + - + + + - + - 7 7 7 . 0  0 . 0  

+ + + - + - + + + - 6 6 5.0 2.0 

+ - ~ - + - + + - + 3 2 2.5 0.5 

- + - + + - + - + + - 2 3 2.5 0.5 

- + + - - + + - + 2 3 2.5 0.5 

+ + - - - + 4- + - - + 6 6 6.0 0.0 

+ - + + + - + - 1 3 2.0 2.0 

- - + ~- + + + + - - 8 8 8 . 0  0.0 

- + . . . .  + - - + + + 6 6 6 0.0 

+ - - ~ + - - + - - + + 6 3 4 . 5  4 . 5  

+ + - 4- + - - + - - - 6 6 6.5 0.5 
- - + - - 4- - + - + + 7 4 5 . 5  4 . 5  

- + + + - + . . . .  9 9 9.0 0.0 

+ - + + - + - - + - - 9 9 9.0 0.0 

+ + + + + + + ÷ + + + + 9 9 9 . 0  0 . 0  

- 0 . 1 3  1 .0  1 . 7 5  0 . 2 5  0 . 0  - 1 .0  1 . 7 5  0 . 8 8  1 . 1 3  - 0 . 1 3  - 0 . 8 8  - I 5 . 7 5  5 . 5  5 . 6 2 5  0 . 9 3 8  

0 . 1 3  8 . 5 3  2 6 . 1 3  0 . 5 3  0 . 0  8 . 5 3  2 6 . 1 3  6 . 5 3  1 0 . 8  0 . 1 3  6 . 5 3  8 . 5 3  

0.720 0 .010 6.7 0 .476 1.000 0 .010 6.7 0.021 0 .005 0 .720 0.021 0 .010 
x 1 0 - s  x 10  s 

* Experimental scores taken from Carter & Carter (1979). 
f Experimental scores taken from a replicate experiment performed as described in the text. 
:~ T h e  s a m p l e  v a r i a n c e ,  s 2 -- 1 / ( N - -  1 ) E ~ ( Q ,  _ Q ) 2 .  

achieving an F ratio of a given magnitude under the 
null hypothesis, i.e. that the modeled contribution is 
insignificant. Therefore, it provides an estimate for the 
significance of the model. 

Analysis of variance for the data in Table 2 was 
carried out using the four factors as categorical, rather 
than as continuous variables. Replication of the design 
(16 experiments x 2 -- 32 tests) provided an additional 
16 degrees of freedom for the error sum of squares, 
permitting a much better estimate for the experimental 
error. This improved error estimate was crucial. It had 
the effect of reducing significantly the denominator of 
the F ratios, making it possible to identify as significant 
the two two-factor interactions in columns F and J. 
ANOVA calculations for response-surface experiments 
are similar in principle, but the independent variables 
are continuous, rather than categorical. 

2.3.3. Multiple comparisons. Whenever more than one 
significance test is being applied, and especially when 
many are applied at the same time, individual tests will 
tend to be distributed normally. So when comparing 
F ratios for many effects, chances increase that one 
or more tests will be significant at a given confidence 
level even under the null hypothesis. Protection against 
concluding that a factor is significant when it is actually 
insignificant can be secured by strengthening the deci- 
sion criterion. One strengthened criterion, the Bonferroni 
criterion (Neter & Wasserman, 1974) involves dividing 
the P value by the number of effects compared. 

2.3.4. Selection of models. The mathematical models 
in Table 1 are general, in the sense that they include 
all possible terms. In practice, not all terms are sig- 
nificant in a given situation, and a more useful and 
significant model can usually be found by eliminating 
some terms. Selecting the best set of independent vari- 
ables is essentially the problem of identifying only real 
effects, so as not to fit the experimental error. For this 
reason it is typically one of the most difficult tasks 
in regression analysis (Neter & Wasserman, 1974). It 
involves balancing the predictive power (the multiple 
correlation coefficient, R, and its square) against the 
statistical significance (the probability value of the F 
ratio) estimated from the analysis of variance. We do this 
first by a stepwise regression algorithm, which selects the 
factors one at a time in the order of their impact on Qcalc, 
adjusting the fitted residual at each step to reflect the 
contributions to the observed variance from the factors 
already selected. Stepwise algorithms can also be run 
in the reverse direction by eliminating factors with the 
smallest impact on the model. Models resulting from 
this process can subsequently be refined manually, by 
adding or deleting factors based on t tests. An example 
is provided §4.1. 

2.3.5. Examining response surfaces. The quadratic 
surfaces evaluated from the models of type (III) (Table 1) 
provide a powerful window on crystal growth. The com- 
plete response surfaces are multi-dimensional and cannot 
be represented easily except by choosing constant values 
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Fig. 2. Microphotographs of the 16 different results from the second replicate of the 2 4 full-factorial experiment summarized in Table 1. Factor 
treatments are coded by the accompanying diagrams, as indicated by bold arrows to either side. Experiments are grouped according to the ligands 
present: (a)-(d) had no ligand; (e)-(h) had only tryptophan; (i)-(/) had only ATP; and (m)-(p) had both tryptophan (2 mM) and ATP (5 mM). 
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Fig. 2 (cont.) Within each of these four blocks, the two top figures were obtained at pH = 6.2, the two lower ones at pH = 7.6, and the two 
on the left were obtained at 293 K, while the two on the fight at 210 K. Hence, for any particular ligand the pH effect can be assessed 
by comparing the two rows, whereas the temperature effect can be assessed by comparing the two columns. The magnification is such that 
the sides of  the coding box represent almost exactly 1 mm. 
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for some of the variables (for example, the coordinates 
of stationary points) and plotting the dependent variable 
against two independent variables at constant levels for 
the remaining parameters. Wherever a stationary point 
can be identified by partial differentiation these 'level 
surfaces' can be drawn at the optimum values for the 
two constant parameters. 

3. Characterization using replicated factorial 
experiments 

A replicated full-factorial design (Carter, Doubli6 & 
Coleman, 1994) showing the effects of pH, temperature, 
tryptophan and ATP on the crystallization of TrpRS is 
shown in Fig. 2 and Table 2. The key observation is that 
these four parameters lead to reproducible variations in 
crystal growth for this system. We sought to define the 
sources of these variations with five goals in mind: (i) 
to establish the statistical significance of all 15 possible 
effects (four main effects, plus six two-factor, four three- 
factor and one four-factor interactions); (ii) to identify 
important main effects; (iii) to identify synergistic effects 
between pairs of factors; (iv) to evaluate the potential 
biochemical significance of the statistically important 
effects; and, ultimately, (v) to rationalize the different 
crystal forms on the basis of a biochemical model 
consistent with the available data. 

The two two-factor interactions highlighted in Table 
2 stood out in an earlier analysis of the unreplicated 
design (Carter & Carter, 1979; Carter, 1990). Because 
they are so interesting from a biochemical standpoint, 
we were quite interested in establishing their statistical 
significance. One way to estimate the experimental vari- 
ances in an unreplicated factorial experiment is to use 
the contrast for the highest order interaction. The pH x 
temperature x tryptophan x ATP interaction in Table 2 
has a rather large F ratio that is itself significant at the 
85% level, according to the Bonferroni criterion. Since it 
may actually be significant it provides an unreasonably 
large estimate for the true experimental error. So we 
repeated the experiment as exactly as possible in order 
to obtain a more realistic estimate of the error. 

3.1. Detecting synergistic effects 
TrpRS crystal growth depends in a highly significant 

way only on a specific biochemically relevant subset 
of the factors examined in the experiment. The pH, 
the pH x tryptophan interaction and the tryptophan x 
ATP interaction exert the strongest influences. These 
effects are highly significant. The F-ratio probability for 
rejecting the null hypothesis for any of the 15 contrasts 
at a confidence level of, say, 0.99 would be 0.01/15 or 
0.00067. All three of the effects highlighted in Table 1 
are, therefore, significant at better than the 0.999 level 
(their P values are all less than or equal to 6.7 x 10-5). 
A good illustration of the pH main effect is shown 
in Figs. 2(m)-2(p). Large, uniform, tetragonal type IV 

crystals grow reproducibly at pH = 7.6 (Figs. 2o and 
2p), irrespective of the temperature, but only at one of 
the two temperatures (293 K, Fig. 2m) at pH = 6.2. 

Both two-factor interactions are significant indepen- 
dently of the tryptophan and ATP main effects, which 
are small. They are illustrated graphically in Fig. 3. 
In both cases, the high level of both factors leads to 
the best crystals: for growth with tryptophan higher pH 
is better, and for growth with ATP the presence of 
tryptophan is better. The two interaction effects differ 
qualitatively, however. The pH x tryptophan interaction 
is such that adding tryptophan improves crystal growth 
only at high pH. Adding tryptophan at low pH leads 
to poorer crystals. The synergistic effect is therefore 
in the same direction as the main effect of pH. The 
ATP x tryptophan interaction works differently; either 
substrate by itself has an unfavorable impact on crystal 
growth, and the absence of both substrates gives almost 
as good crystals as the presence of both together. The 
two interaction effects were confirmed by supplemen- 
tary observations and experiments described elsewhere 
(Carter, Doubli6 & Coleman, 1994). 

3.2. Drawing biochemically relevant conclusions 
Lattice contacts, and hence crystal integrity, are apt 

to be sensitive to conformation changes. There is con- 
siderable evidence that the significant effects identified 
in Table 2 arise indirectly, via effects of pH and ligand 
binding on conformational equilibria. 

3.2.1. Dependence of type IV crystal growth on the 
synthesis of Trp-2'(3')-ATP. Tryptophan and ATP act 
synergistically to produce the best TrpRS crystals (Fig. 
3b). From an early stage it appeared that enzyme- 
catalyzed Trp-2'(3')-ATP synthesis was essential for the 
growth of type IV crystals (Coleman & Carter, 1983). 
Inhibiting acyl transfer with inorganic pyrophosphate 
prevented growth of type IV crystals, producing instead 
small crystals with a type II* habit. Pyrophosphate 
would be expected to promote pyrophosphate exchange 
of bound tryptophanyl adenylate via reversal of amino- 
acid activation, thereby competing with acyl transfer. 
We verified this conclusion with the enzyme in so- 
lution by showing that 2 mM pyrophosphate inhibits 
acyl transfer to tRNA a'rp and to ATP. Thus, in cases 
where tryptophanyl-5'-adenylate is being formed on the 
enzyme, acyl transfer to a second molecule of ATP must 
occur to produce enzyme-bound tryptophanyl-2'(3')-ATP 
in order for type IV crystals to grow. In order to 
affect crystal growth, acyl transfer probably causes a 
conformational change in the enzyme. A conformational 
change accompanying acyl transfer is the most likely 
explanation for the strong Trp x ATP interaction. 

3.2.2. pH dependence of type I, type II* and type 
IV crystal stability. In keeping with the strong pH 
x Trp interaction, the growth and diffraction quality 
of the different crystal forms have markedly different 
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sensitivities to pH changes. Type II* crystals containing 
tryptophan can be grown and are stable only above about 
pH = 6.8. Below pH = 6.5 they shatter violently. Type IV 
crystals, on the other hand, grow over a wide pH range 
and are stable to heavy-atom derivatization in the pH 
range 5.2-7.8, provided the ATP is replenished weekly. 
Deterioration of type II* crystals at low pH may also 
result from the effect of pH on the protein conformation. 
Tryptophanyl ATP, on the other hand, remains bound to 
type IV crystals at high pH (Coleman & Carter, 1983), 
consistent with the stability of these crystals both at low 
and high pH. 

The strong pH x Trp interaction is also consistent 
with evidence that pH is linked to conformational 
changes related to substrate-binding affinity in tRNA 
synthetases (H61ene, Brun & Yaniv, 1971; Lam & 
Schimmel, 1975). For the valyl and isoleucyl enzymes, 
(both class I enzymes, as is TrpRS) lower pH favors 
conformations with higher affinity for tRNA substrates; 
higher pH favors conformations with higher affinity 
for amino acid. These precedents provide a natural 
rationalization for the pH x Trp interaction and, in 
particular, the fact that the best crystals containing 
tryptophan grow at high pH. Protons (low pH) may 
stabilize an enzyme conformation compatible with the 
enzymology of acyl transfer, i.e. that found in type 
IV crystals, and that conformation may be incompatible 
with type II* lattice packing. These effects, reinforced by 
analysis of crystal packing in the different crystal forms 
(Carter, Doubli6 & Coleman, 1994), provide a coherent 
rationalization for the different TrpRS polymorphs in 
terms of ligand- and pH-linked conformational equilibria 
related to catalysis. 

These conclusions confirm our original premise that 
quantitative analysis of crystal polymorphism caused 
by different, functionally significant factors can provide 
biochemical insight. They emphasize the usefulness of 

Table 3. Hardin-Sloane minimum integrated variance 
design matrix for four factors 

This  des ign was p repa red  specifically for use in the e xpe r ime n t s  
repor ted  here by N. J. A. S loane ,  us ing  G O S S E T  ( H a r d i n  & 
Sloane ,  1993). Ma t r i x  ent r ies  shou ld  be in t e rp re t ed  as: 0 = center ,  
- 1 = the low end ,  a n d  I = the high end  o f  the va r i ab le  range.  The  
same des ign has been  used repea ted ly  in d i f ferent  contex ts ,  by 
a s s ign ing  the ma t r ix  ent r ies  to d i f ferent  p a r a m e t e r s  a n d / o r  ranges.  
The  three response-sur face  e xpe r ime n t s  descr ibed  here were car-  
ried ou t  as descr ibed  in the a c c o m p a n y i n g  T a b l e  4. 

E x p e r i m e n t  Var iab le  I Var iab le  2 Var iab le  3 Var i ab le  4 
I 0.000 - 0.056 0.000 - 0.250 
2 0.000 - 0.056 0.000 - 0.250 
3 0.000 1.000 0.000 - 0.250 
4 0.000 -- 1.000 0.000 - 1.000 
5 1.000 - 0.007 0. I 16 1.000 
6 - 1.000 - 0.007 - 0. I 16 1.000 
7 0.210 0.108 - 1.000 - 1.000 
8 - 0.210 0.108 1.000 - 1.000 
9 - 1.000 -1.000 1.000 -0 .250 
10 1.000 1.000 - 1.000 - 0.250 
11 1.000 - 1.000 - 1.000 - 0.250 
12 1.000 1.000 1.000 - 0.250 
13 0.492 - 1.000 1.000 1.000 
14 -0.492 - 1.000 - 1.000 1.000 
15 - 1.000 1.000 0.577 - 1.000 
16 1.000 1.000 - 0.577 - 1.000 
17 0.669 1.000 - 1.000 1.000 
18 - 0.669 1.000 1.000 1.000 
19 - 1.000 - 1.000 - 1.000 - 1.000 
20 1.000 - 1.000 1.000 - 1.000 

systematic evaluation of macromolecular crystal growth 
conditions, especially in cases where such polymorphic 
behavior is evident. 

4. Optimization with response-surface experiments 
and quadratic models 

A central goal in studying macromolecular crystal 
growth is to produce the best possible crystals for 
high-resolution diffraction studies. Our previous work 
showed that it is possible to identify important factors 
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Fig. 3. Graphic representation of the significant two-factor interactions from Table 1. Cell mean refers to the average score for the four cells from 
Table 2 having the same combinat ion of signs for the two factors. These surfaces are not analytical functions. They were prepared using an 
inverse-squared distance-smoothing algorithm provided by the three-dimensional graphing module in SYSTAT (Wilkinson, 1987) to fit the four 
plotted cell means. (a) The trytophan x ATP interaction. The presence of tryptophan leads to significantly better crystals at high pH and to 
significantly worse crystals at low pH. (b) The tryptophan x ATP interaction. Growth in the presence of only one of the two substrates leads 
to significantly poorer crystals than can be grown when both are present or when both are absent. 
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Table 4. Variable and range assignments for response-surface experiments 

Experimental parameters, together with their high and low levels, chosen for individual response-surface experiments performed using 
the matrix in Table 3. 

T y p e  I expe r imen t s  T y p e  IV exper imen t s  
6.40 ( -  !) < pH < 7.2 (1) 7.20 ( -  1) < pH < 8.0 (I) 

4.4 ( -  I) < [Prot] < 5.2 (I) 3.8 ( -  1) < [Prot] <4 .6  (1) 
(mg ml i) (mg ml-J) 

0.25% ( - 1) < [PEG] < 1.0% (I) 0.25% ( - I) < [PEG] < i.0% (1) 

2 8 7 K ( - l ) < T e m p < 3 0 3 K ( l )  2 8 7 K ( - l ) < T e m p < 3 0 3 K ( I )  

Type II* experiments 
7.5 ( -  I) < [ProtI[PPNT] < 9.5 (1) 

(mg ml -I ) (M) 

4.0 ( - 1) < [Prot] < 6.4 (1) 
(mg m l  t) 

0.35% ( -  l) < [PEG] < 0.42% (l) 

2 8 7 K ( - l ) < T e m p < 3 1 0 K ( l )  

influencing crystal growth by using factorial screening 
experiments. Work reviewed in the previous section 
showed that our quantitative scoring system was 
reproducible enough that important effects could be 
demonstrated convincingly by statistical analysis of a 
replicated full factorial experiment. The surprisingly 
small mean sample variance in column T in Table 2, 
0.938, suggested that our scoring system might be used 
to optimize crystal growth by response-surface methods 
(Box, Hunter & Hunter, 1978). 

At the same time it became apparent that several of 
the different TrpRS crystal polymorphs exhibited serious 
crystal growth problems that impeded structural studies. 
Tetragonal (type IV) crystals of the selenomethionine 
analog of the synthetase, which we were using for phase 
determination, were always smaller than corresponding 
crystals of the native protein. Optimization in this case 
might produce larger crystals of the Se-Met protein. 
Triclinic (type I) crystals, grown from ligand-free en- 
zyme, were prone to polymorphism of a different order, 
producing at least three different habits, none of which 
could be thoroughly characterized, because crystals were 
too small and grew irreproducibly. Finally, the mono- 
clinic form (type II*; Carter, Crumley, Coleman, Hage & 
Bricogne, 1990), presented two different problems. First, 
they never grew larger than about 20 x 20 x 200 pm, 
about 100 times smaller than is required for X-ray 
photography or data collection. Second, repeated macro° 
seeding (Thaller et al., 1981, 1985) led to extensive 
growth of satellite crystals on the seed, greatly lowering 
the effective yield of good crystals. 

For these reasons, we decided to try to optimize the 
crystal growth conditions using response-surface meth- 
ods. We were greatly stimulated by Neil Sloane, who 
provided the experimental design after pointing out to us 
the important differences between factorial experiments 
used when screening for unknown determinants and 
those used for optimization, once a clear idea about 
the important determinants of the response surface is 
available (Fig. 1). 

4.1. Response surfaces for the tetragonal and triclinic 
crystal forms. 

4.1.1. Use of the design matrix. Specifications for 20 
sampling points in our response-surface experiments are 

encoded in the Harden-Sloane (H-S) design matrix in 
Table 3, which exhibits the properties illustrated in Fig. 
1 (b). The point [0,0,0,0] represents the mean value, and 
+ 1 and -1 the highest and lowest levels used for each 
factor. There are two identical experiments essentially at 
the origin and 18 others distributed within the faces of 
a hypercube. This particular matrix was generated with 
the restriction that the temperatures coded in column 5 
are 287, 294 and 303 K because these temperatures were 
accessible in our laboratory. 

Similar response-surface experiments were carded out 
for all three TrpRS crystal forms. The independent 
variables for the quadratic surface to be modelled for 
crystal forms I and IV included the pH, temperature, pro- 
tein concentration, and the concentration of an additive, 
polyethylene glycol (PEG 400), previously suspected 
to be beneficial for growth of single type IV crystals 
(Coleman, 1988; Carter, Doubli6 & Coleman, 1994). 
The assignments are summarized in columns 1 and 2 of 
Table 4. Temperature and PEG concentration were varied 
over the same ranges. The two experiments differed, 
however, in the specific ranges of the pH and protein 
concentration, because the analysis of the complete 
factorial experiment in Table 2 had shown that lower 
pH's were better for crystals grown in the absence of 
tryptophan. 

4.1.2. Optimal quadratic models. The type I and type 
IV experiments were performed first, almost simulta- 
neously; they are summarized in Tables 5 and 6, and 
Figs. 4-6. Experimental scores similar to those used 
for the full-factorial design were initially used to esti- 
mate parameters for the complete quadratic model (III). 
However, in both cases, it became clear that selecting 
subsets of variables improved the statistical significance 
(F ratio) without decreasing the multiple correlation 
coefficient for prediction. Both models reproduce the 
observed variability very well - the multiple regression 
coefficients and their squares are close to 1.0 - and are 
statistically very significant - the F ratios have very low 
probability under the null hypothesis. 

The response-surface experiment for type I crystals 
is presented below, step by step, and in some detail 
to illustrate the process of building and analyzing the 
model. 

The selection and range of independent variables 
assigned to the H-S matrix are given in the first colurtm 
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Table 5. Regression statistics and analysis of variance for the type I Hardin-Sloane response surface experiment 

The dependent variable, Qoh.,, was fitted to calculated values, Q¢,~c, based on the model in Table 6 for the 20 experiments in Table 3. 
Coefficients of the model are given in column 2. The model provided an excellent set of predictions, superimposed on the observed 
values in Fig. 4. The correlation coefficient between Q,,b~ and Q~,~ is 0.958, and the standard error of the estimated Q~t¢ is 0.821 or 
about 10%. The coefficients are all significantly larger than their standard errors, as indicated by the individual t-tests (Student's t = 
coefficient/standard error), whose probability values are given in the last column. The F ratio given in the ANOVA table and its P value 
are similar tests referring to the model as a whole. To illustrate choosing between competing models, when the [Protein] 2 term was 
included with this model, the correlation coefficient changed very little (0.958~---> 0.959), but the F ratio decreased to 12.645, and the 
t-test for the flc: had a P value of 0.7. All of these statistics improve significantly with the twice-replicated experiments with the modified 
experimental search directions and quantitative scoring used for the data in Table 6 and Fig. 7. 

Parameter Coefficient Std. error Std. coeff Student's t P(2-tail) 
/30 7.29 0.40 0.000 18.07 0.16 × 10 s 
/3pH 0.67 0.26 0.24 2.61 0.024 
/3c -0.45 0.24 -0.17 - 1.85 0.091 
f ir 1.02 0.23 0.39 4.46 0.96 × 10 
/3pH 2 - -  1.32 0.43 - 0.27 - 3.08 0.010 
/37-2 - 2.58 0.42 -0.57 -6.12 0.75 × 10 -4 
/ 3 p H  × (" 1.34 0.29 0.43 4.58 0.79 × 10 
/3r× c - 1.03 0.28 -0.33 - 3.74 0.003 
/3pti × r 0.73 0.30 0.21 2.42 0.034 

Analysis of variance 
Sum-of- Degrees of 

Source squares freedom Mean-square F ratio P 

Regression 83.53 8 10.44 15.47 0.57 × 10 4 
residual 7.42 I 1 0.68 

Table 6. Quadratic models for type I and type IV 
TrpRS crystal growth response surfaces 

Models were selected following a stepwise multiple regres- 
sion with the parameters of a complete quadratic model 
(lIl), followed by an empirical procedure of eliminating 
weak predictors to maximize the multiple correlation coef- 
ficient and its square while minimizing the probability, P, 
of the corresponding F ratio. The standard error of the 
estimate in these examples is based on a unitless score 
ranging from 0 to 9. 

Type  I mode l  

Q = 8o + f lpnpH + f l r T +  f l c C  + flpH2pH z + f l r2T  2 
+ / 3 p H × r p H  x T +  f lpH×cpH x C + f l r × c T ×  C 

Regress ion statistics Analys is  o f  var iance  
Std e r ror  o f  Degrees o f  

R R 2 es t imate  f r eedom F rat io p 
0.958 0.918 0.821 11 15.474 0.6 × 10 -'1 

Type  IV model  

Q = flo + flpEGPEG + f l r T  + f l c C  + ~ P E G  2 × r P E G  2 x T 
Jr- ~ c - 2 C  2 -]- ~ P E G  × TPEG x T + f i t  × c T  x C 

Regression statistics Analys is  o f  var iance  
Std er ror  o f  Degrees o f  

R R 2 es t imate  f reedom F rat io p 
0.864 0.747 2.177 7 5.064 0.007 

of Table 4. The 20 experiments were each performed 
only once in this case. They were scored using the same 
qualitative scheme used to score the experiments in the 
full-factorial experiment. The scores were input to a 
SYSTAT data file together with the H-S matrix. 

Using the MGLH (multiple regression, general linear 
hypothesis) module in SYSTAT, tests were carried out 

using the stepwise regression algorithm in the forward 
direction starting from a model containing all 15 terms 
of equation (III), Table 1 (four each of the main effects 
and the quadratic terms, plus the seven two-factor inter- 
actions). The ultimate model turned out to use only nine 
of these 15 parameters. Student t tests were examined to 
verify the statistical significance of each parameter in the 
model (Table 5). None of the terms involving PEG 400 

10 

¢,a 8 

6 e, 

• 4 

~ : t . 2  

! 

0 
• ° 

p H  -0.6 x , . , j j _ 0 . 6  0.,ae,¢ ~t~xe 
z 2 z 2 , ~ e ~ v  

.2 

Fig. 4. The quadratic model gives excellent predictions for the observed 
results. Comparison between the observed data points (Qobs) for 
the Hardin-Sioane design performed for type I crystals and those 
calculated from the fitted response-surface formula given in Table 5 
(Qcalc). The 20 points are displayed on the two-dimensional surface 
spanned by pH and temperature, which shows the most important 
variation and in which the most important optimization takes place 
(see Fig. 6). Multiple points along a given spike, therefore, represent 
different values for the two variables ([PEG] and [protein]) not 
spanned by that surface. 
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had any significant effect on the score, and the protein- 
concentration terms were only marginally important. The 
concentration did, however, interact with both the pH 
and temperature, which were dominant in defining the 
surface. 

The model itself is presented in Table 6, together with 
regression and ANOVA statistics. Agreement between 
observed and predicted scores, illustrated graphically in 
the pH x temperature plane (Fig. 4), is convincing; the 
multiple correlation coefficient between Qo~ and Qc~lc is 
0.959. The F ratio, 15.47, has a probability of 0.000057 
under the null hypothesis. 

Partial derivatives with respect to pH, concentration 
and temperature were evaluated from the model expres- 
sion given in Table 6. Equating these three derivatives to 
zero and solving for the coordinates (pHopt, Copt and Toot) 
of the optimum gave rise to the prediction that crystals 
grown at these values would be better than any of those 
observed in the H-S experiment. Verification of that 
prediction is shown in Fig. 6. Examination of the level 
surfaces at the stationary point (Fig. 5a) shows that the 

pH x temperature surface has a clear maximum, whereas 
the pH x concentration and temperature x concentration 
surfaces are ridges in which nearly optimal crystals 
appear over a wide range of different combinations of 
the two factors. 

The model for type IV crystals was obtained and 
analyzed in the same manner, but was qualitatively quite 
different. The pH proved to be unimportant, and was 
omitted from the model. Use of PEG 400, however, 
was quite important. An improved fit was obtained 
by including a term for the interaction between the 
temperature and the square of the PEG 400 effect. This 
term, T x PEG x PEG, suggests an interaction between 
the optimum value for the PEG concentration and the 
temperature. It is possibly related to the observation that 
substitution of selenomethionine produces crystals that 
are unstable at lower temperatures, in marked contrast 
to the behavior of native protein crystals (Doubli6 & 
Carter, 1994). Both observations may arise from the 
involvement of hydrophobic lattice packing forces in 
stabilizing type IV crystals. 

' ~ : : ~ Z .  , . : : :  . . . .  ,, . ~ : . ' : : " "  
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20 
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Fig. 5. Representative two- 
dimensional level surfaces for 
the response surfaces in Tables 
5 and 6. Values for the two 
additional variables were set at 
the stationary points by partial 
differentiation and solution 
of the resulting simultaneous 
equations. 
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4.1.3. Level surfaces. The level surfaces have interest- 
ing properties (Fig. 5) that are frequently encountered in 
response-surface studies (Box, Hunter & Hunter, 1978, 
ch. 15). As noted above, ridges result when different 
combinations of two factors produce essentially the 
same result. They indicate that the natural coordinate 
directions chosen for the experiment are not 'fundamen- 
tal' factors, but that some combination of coordinate 
directions may represent a fundamental factor (Box, 
Hunter & Hunter, 1978). For example, the temperature 
x concentration surfaces for both crystal forms I and IV 
are ridges. Both protein concentration and temperature 
influence the supersaturation ratio, which does have 
a fundamental influence on crystal growth because it 
determines the concentration of nucleation centers. The 
ridge in this case probably represents combinations of 
concentration and temperature with the same supersatu- 
ration ratio. 

4.1.4. Prediction and confirmation. Two of the level 
surfaces show maxima: pH x temperature for type I 
and PEG 400 x concentration for type IV crystals. 
Thus, the stationary points make definite predictions 

with respect to optimization of crystal growth. Both 
predictions were verified by subsequent experiments. 
The predicted optima for type IV crystals produced a 
modest increase in crystal size of the native protein, 
but unfortunately did not noticeably increase the size 
of SeMet protein crystals. Predicted optima produced a 
dramatic improvement in the habit, uniformity and ho- 
mogeneity of type I crystals (Fig. 6). We have never seen 
single type I crystals with so favorable a morphology. 

4.2. [Protein] x [precipitant] as a search direction: 
optimization of  type II* crystals 

The preliminary success with the first two response- 
surface experiments encouraged us to try to increase 
the volmne of type II* crystals by this procedure. This 
experiment differed in several important ways from the 
two previous ones. 

We set up duplicate experiments for each sample 
point in the design, in order to enhance the precision, 
statistical significance, and hence the accuracy of the 
model parameters. 

. . . . .  

.... ,~ 

. . . . .  

Fig. 6. The type I crystal response-surface experiment, together with its verification. Numbered examples around the periphery denote the numbered 
design points from Table 3 and show the data from which the surface in the center was constructed. That surface is the same as the first 
surface in Fig. 5(a). The spikes in the surface represent the observed scores for the individual experiments. Opt represents a verification 
experiment performed at the stationary point of the surface, which represents an optimum score. Crystals of such size and uniform dimensions 
had never been seen previously for this crystal form. 
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We used three different scores to evaluate the results. 
Since type II* crystals had always been too small, 
and had a tendency to grow as needles, we scored 
experiments separately on the basis of the total vol- 
ume and the ratio of width to length, estimated by 
microscopic examination. Since type II* crystals also 
tend to sprout satellite crystals, we used a new score, 
called 'uniformity', to quantify this tendency in each 
experiment. 

We changed one of the search directions, replacing 
the pH by the product of the protein and precipitant 
concentrations as the independent variable in column 1 
of the design matrix. We reasoned that an optimal pH 
could be inferred from the strong, positive, two-factor 
interaction between pH and tryptophan, which implied 
that the type II* crystals should be grown at a higher 
pH. Not having to optimize the pH freed up one column 
to be assigned to a new factor. 

Varying the product of the two concentrations 
systematically was an attempt to explicitly vary the 
supersaturation. In each of the two previous response- 
surface models, we had observed that the temperature 
x concentration level surfaces were ridges, suggesting 
that some other parameter was a more fundamental 
factor. Moreover, the work of Kam, Shore & Feher 
(1978), Feher & Kam (1985) and Ataka & Tanaka (1986) 
had demonstrated that crystal size was often a sharply 
peaked function of the supersaturation ratio, a point 
also addressed by Rosenberger (1986), Rosenberger & 
Meehan (1988), Boistelle & Astier (1988) and later by 
others (Rirs-Kautt & Ducruix, 1992; Mikol & Giegr, 
1992). 

These studies showed that crystal growth experi- 
ments often produce similar results along a hyperbola 
in the [protein] x [precipitant] plane, characterized by 
a constant value of that product. Since we had been 
unable to grow bigger type II* crystals by varying 
supersaturation with changes in protein concentration 
at constant precipitant concentration, we decided to 
search the entire supersaturation zone, sampling points 
along a two-dimensional region spanned by protein 
concentration and the [protein] x [precipitant] product 
as summarized in Table 4, column 3.t 

This new search direction proved very useful indeed 
(Fig. 7). Previously, type II* crystals grown under the 
conditions identified by the original incomplete factorial 

~-Approximating the initial supersaturation by the [protein] x [pre- 
cipitant] product can be further rationalized on the following basis. 
Supersaturation, S, can be defined as the ratio of the initial protein 
concentration to the equilibrium protein concentration or solubility. In 
turn, the solubility is often defined by the relation In S -~ C - Ksm 
(Arakawa & Timasheff, 1986), where C and Ks are constants, and m 
represents a measure of the chemical potential of the precipitant. The 
minus sign for Ks implies that the ratio, [protein]/explC - Ksml can be 
rewritten as [protein]explKsm] ~_ [protein]l 1 + Ksml. In practice, Ksm 
>> 1, so S ~ [protein]Ksm. For more than one precipitant, and assuming 
to a first approximation that In S -- C - Z n. iK~.~m] gives a more general 

K~m~ formulation, $ ~ [protein]l-If.  lexp(/~sm~) ~ [proteinlI-Ir- 1(1 + s sj. 

search were similar to those observed in experiments 
5 and 20. Systematic titration of these conditions to 
change the initial supersaturation by changing the TrpRS 
concentration produced only a slightly bigger maximum 
size. This modest increase can be rationalized, pos t  hoc,  

from the more complete, two-dimensional response sur- 
face. This one-dimensional search missed a considerably 
better optimum acheivable at a higher  initial [protein] x 
[precipitant] product (Opt l and Opt2). When we tried 
growing crystals in two different experiments at this 
point, they were substantially better in all three respects. 
They were more isometric; they were larger by two 
orders of magnitude; and they were free of the satellite 
crystals that plagued all our previous attempts to prepare 
good type II* crystals. These crystals were the first of 
this type that have ever grown large enough the first time 
to give strong X-ray diffraction patterns. 

It is rather important to notice that this optimum size 
was obtained outside the range of variables we used in 
the response-surface determination in the first place. This 
can be seen in terms of the traditional solubility diagram 
in Fig. 8. The maximum of the fitted surface lies at a 
[protein] x [precipitant] product well above the range 
of hyperbolae that bounded our experiment. Despite this 
limitation, fitting the sampled points produced a useful 
surface, whose stationary point was an accurate predictor 
of bigger more isometric and more uniform crystals. 

5. Discussion 

The central theme of this work is that quantitative scor- 
ing of appropriately designed crystal growth experiments 
is of more than academic interest because it opens 
up a powerful range of analytical methods based on 
multiple regression and the analysis of variance. Two 
different practical advantages have been described: mak- 
ing quantitative inferences about biochemically relevant 
influences on crystal growth and using quadratic models 
to find stationary points for optimal crystal growth. 

5.1. Crystal  growth  analysis  in a b iochemical  context  

One often thinks of crystal growth in terms only of 
the equilibria most closely associated with formation of 
intermolecular contacts - prenuclear aggregates, critical 
nuclei and so on (Mikol & Giegr, 1992) - and with the 
addition of units to a growing crystal face. However, 
other underlying equilibria, particularly ligand binding, 
can influence these more obvious processes indirectly 
through conformation changes, giving rise to consider- 
able variation in the qualities of the crystals (Schutt, 
Lindberg, Myslik & Strauss, 1989). Normally, the study 
of crystal growth behavior is aimed at gaining control 
over this variability in order to make better crystals. 
The variability itself is not considered as a source of 
biochemical information about the macromolecule under 
study. 



CHARLES W. CARTER JR AND YUHUI  YIN 587 

However, this situation can be turned around: vari- 
ability in crystal growth behavior actually also carries in- 
formation about biochemically relevant conformational 
equilibria, provided it can be shown to be caused by 
factors that change the behavior of the macromolecule. 
A full factorial experiment, combined with the analy- 
sis of variance, can provide evidence for such causal 
relationships. As noted above, ligand-binding- and pH- 
dependent conformational changes have previously been 
described for aminoacyl-tRNA synthetases. Conforma- 
tional changes would be expected to affect protein crystal 
growth. A factorial experiment provided statistically 
significant evidence that TrpRS crystal growth behaves 
in a manner consistent with that literature, and hence 
that representative stages of the TrpRS mechanism have 
been trapped in the different crystal forms. 

5.2. Stationary points, quality control and sources of 
residual variability 

A 'stationary point' of any function is, by definition, 
a combination of the independent variables where the 
result does not change much for small fluctuations 
in any direction away from that point. This crucial 
concept from response-surface methodology underscores 

other important practical advantages of locating station- 
ary points besides that of growing optimum crystals. 
Working at stationary points for any process tends to 
insulate it from fluctuations in other uncontrolled or 
uncontrollable factors. Locating and using stationary 
points may therefore lead to corollary benefits, such as 
better quality control, higher success rates and greater 
cost effectiveness for processes that depend on getting 
reproducible crystals (crystallization in microgravity). 
Moreover, in the case of microgravity, such an effort 
could help clarify its real benefits, as distinct from those 
that result from random fluctuations in how experiments 
were set up. 

There is evidence supporting this view in the patterns 
of residual variability in the experiments illustrated in 
Table 2 and Fig. 2. Some of the conditions, notably 
number 15 and number 16 produced results that were 
indistinguishable by any criteria on both occasions (Figs. 
20 and 2p) and have invariably produced the same 
results under many replications of the same conditions, 
throughout our work on that structure. Other conditions, 
for example, numbers 3, 8, 11 and 13 (Figs. 2i, 2n, 2k 
and 2g) gave results that were, qualitatively, distinctly 
different in the two different replicates, and which we 
have verified in many trials also give more variable 

g 

@~" 

Fig. 7. The type IV crystal response-surface experiment, together with its verification. This figure is constructed in the same manner as Fig. 
7. The surface is similar to that shown in Fig. 6, except that the gradient is steeper. Opt l and Opt2 represent two replicate experiments 
set up at the optimum point of the surface. 

I 
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behavior. Response surfaces for the different crystal 
forms (Figs. 5-8) suggest that these large individual 
sample variances are indeed associated with conditions 
far from stationary points, where there may be large 
partial derivatives with respect to the crystal growth 
variables. Experiments 15 and 16 are close to the local 
optimum in the type IV response surface, whereas ex- 
periments showing large variation between replicates lie 
far from such optima (Figs. 7 and 8). Thus, distance of 
a particular experimental specification from a stationary 
point in the response surface may place a more important 
limitation on the reproducibility of a score than does the 
subjectivity of the experimenter. 

A related observation of potentially general signifi- 
cance is the fact that the stationary points for the three 
different scoring methods in Table 7 are very close 
to each other. In other words, when we optimized for 
the asymmetry ratio we also simultaneously found that 
we got bigger and more uniform crystals. Particularly 
gratifying is the fact that the multiple growth that had 
plagued our reseeding experiments does not seem to be 
a problem with crystals grown at the stationary point for 
the most isometric crystals (Fig. 7). 

5.3. Multidimensionality, search directions and 
sampling efficiency 

It is worth noting yet again how important it is to 
sample the experimental space appropriately, in pur- 
suit of a given objective. The results described here 
were all obtained from a small number of experiments, 
using modest amounts of protein, because the design 
matrices were constructed carefully. The efficiency of 
factorial experiments, paradoxically, seems to increase 
with the dimensionality of the problem. In fact, this 
increase in efficiency is understood by mathematicians. 
Bricogne (1993) has noted that the underlying structure 
of sampling in multi-dimensional spaces is closely re- 
lated to problems associated with error-correcting codes. 

...6.5 
I 

g 4.5 'F 

'~' 2.5 
0.6 1.1 1.6 2.1 

[ppnt] (M) 
Fig. 8. Sampling points for the type II* response-surface experiment 

displayed on a traditional solubility-curve diagram. The optimum 
point from the surface constructed from the experimental data (reverse 
contrast) lies well outside the range of values tested in the design, and 
in a region we had never sampled previously because it involved a 
significantly higher [protein] × [precipitant] product. 

Table 7. Quadratic models for type II* TrpRS crystal 
growth response surfaces 

Models were selected by the same procedure as that used 
for the type I and type IV models in Table 5. Three 
different scores were fitted to three different models. The 
standard error of the estimate for the volume has units of 
mm3; for the uniformity score it is based on a unitless 
number between 0 and 10. 

Type II* model 1, W/L ratio 

QwL ratio = /30 - ~ - / 3 P E G P E G  + flcC+/3prodPrOd +/3TT 
+/3PEG 'PEG2 +/3PEG × ProdPEG x Prod 
-'It-/3PEG × rPEG × T+flc~C2+flcxrCX T 
+/3Pr~ ~Prod2 +/3Prod × rProd × T 

Regression statistics Analysis of variance 
Std error of Degrees of 

R R 2 estimate freedom F ratio p 
0.975 0.951 0.155 11 38.58 0.8× 10 ~l 

Type II* model 2, volume 

OVolume /30 +/3PEGPEG +/3arodProd +/3rT+/3PEG,PEG 2 
+/3PEG × cPEG x C +/3PEG × p, odPEG x Prod 
"~/3PEG x rPEG x T+ flc2C 2 +/3c × VrodC x Prod 
+/3c x rC x T+/3P~od2Prod z +/3Prod x rProd × T 
+/3r~T 2 

Regression statistics Analysis of variance 
Std error of Degrees of 

R R 2 estimate freedom F ratio p 
0.992 0.984 7.01 x 10- 6 (mm - 3) 13 65.8 0.3 × 10 9 

Type lI* model 3, uniformity 

Quniform = fl0 q-/3PEGPEG +/3cC +/3prodProd + flrT 
+ flPEG :PEG2 + / 3 P E G  x c P E G  × C 
+/3PEG x P,odPEG x Prod +/3PEG × rPEG x T 
+/3o C2 + tic'× arodC X Prod +/3c x rC x T 
+ flProd2Prod 2 + / 3 r 2 T  2 

Regression statistics Analysis of variance 
Std error of Degrees of 

R R 2 estimate freedom F ratio p 
0.973 0.947 0.763 13 18.04 0.3 x 10 ~ 

Sampling of multi-dimensional factorial experiments can 
indeed become quite efficient when many factors are 
explored simultaneously, for example by statistical de- 
signs of the type originally described by Carter & 
Carter (1979). Incomplete factorial designs were crucial 
to us for crystal growth screening (Carter & Carter, 
1979) and phase-permutation experiments (Doublir, Xi- 
ang, Bricogne, Gilmore & Carter, 1994). This lends 
a pleasing symmetry to the use of designed factorial 
experiments in the initial and final stages of crystal 
structure determination, both of which are quintessential 
factorial problems. 

A related point concerns how to span the multidi- 
mensional spaces encountered in crystal growth projects. 
Here, the level surfaces in Fig. 5 were very helpful, sug- 
gesting the initial supersaturation as a search direction. 
Using the initial supersaturation in this way forced us to 
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examine regions we had never tried before, and which 
pointed the way to a substantial improvement in type II* 
crystals (Fig. 8). It also improves the chances that every 
experiment will produce some kind of crystal, thereby 
reducing 'wasted' experiments. 

Finally, it should be noted that 'efficiency' cannot 
always be achieved simply by finding the smallest num- 
ber of experiments necessary to do the job. The critical 
problem in implementing quantitative methods is to 
determine the residual experimental variance. This has 
lead us increasingly to perform replicate experiments. 

This work has been supported, at various times, by the 
NIH (GM26203), the American Cancer Society (BE54) 
and the UNC Biochemistry Department. We owe special 
thanks to Mary Ellen Jones and Mike Douglas for 
their support, and to Neil Sloane for his design, his 
advice, for a critical reading of the manuscript and 
for his enthusiasm. Ongoing experimentation by and 
discussions with Lee Kuyper clarified various aspects of 
the use of response-surface experiments. CWC Jr thanks 
C. W. Carter for his advice and instruction. 

5.4. Other response-surface methods 
Most generally applicable procedures for improving 

inferior crystals involve some kind of systematic search 
for better growth and/or stabilization conditions and are, 
generically, response-surface experiments. An appealing 
feature of the matrix in Table 3 and similar ones that 
could be generated for different numbers of variables 
(Hardin & Sloane, 1993) is that it is general enough 
to be adapted to other, four-variable situations. We 
have adapted the same design for optimizing in vitro 
transcription yields by assigning different independent 
variables to the last four columns. 

In our three examples the experimental points were 
sensitive enough to the curvature of the surface to 
produce sensible quadratic models. Other procedures 
may be helpful in cases where current conditions are 
far from a stationary point, and where a design like that 
in Table 3 may prove wasteful. Such cases can often 
be treated effectively by choosing a small region around 
the current conditions and fitting a plane to the sampled 
points. The direction of steepest ascent in such a fitted 
plane will often point close enough toward the optimum 
that a line search of 3-5 points along that direction will 
provide a fair indication of its location. Then, a design 
like that in Table 3 can be centered on that new point. 
These procedures are described in more detail in a very 
useful discussion of response-surface methods in Box, 
Hunter & Hunter (1978). 

5.5. Real improvements in difficult cases 
Finally, it is worth pointing out that these studies, with 

the possible exception of the type IV response surface, 
were all carried out with real and difficult problem situ- 
ations in which the answers were unknown beforehand, 
and in which further crystallographic work depended 
heavily on finding better crystals. They were not 'test 
cases' in which the answers were known beforehand. 
The reproducibility and efficacy of the Hardin-Sloane 
response-surface design in revealing where better crys- 
tals could be grown represents, therefore, a solid advance 
in our structural studies research. Response-surface tech- 
nology has become our routine for making things work 
better. 
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